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Abstract

We consider the problem of implementation in a model with agents who
have interdependent payoffs. We show that in such a model, under mild restric-
tions on the behavior of the decision rules and the structure of the valuation
functions, ex-post implementation is impossible. Given profiles of valuation
functions and distributions of signals, the set of Bayes–Nash implementable de-
cision rules in any interdependent payoffs setup is equal to the set of Bayes–Nash
implementable decision rules in the independent private values setup. For each
decision rule in this set we construct a transfer scheme that implements it in a
Bayes–Nash equilibrium in the independent private values setup and in every in-
terdependent payoffs setup. (Keywords: Mechanism design; Social preferences;
Ex-post implementation; Bayesian implementation.)

1 Introduction

Models of mechanism design usually consider selfish agents, that is, agents whose
utilities consist of their own personal payoffs. However, it is well established that
in many economic environments subjects often have “other-regarding preferences.” In
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these environments agents’ utilities depend not only on their own personal payoff but
also on the payoffs of other agents in the society. In this paper, we study a problem
of mechanism design in such environments. Our study focuses on the implementation
of decision rules that depend on information about the agents’ personal payoffs and
ignore information about their social preferences. This study is motivated, among
other things, by the following economic scenarios.

The first scenario concerns an agency problem in a conglomerate. A conglomer-
ate is a collection of independent corporations, engaged in different business ventures,
that function as a single economic entity under the control of a central administration.
The problem, introduced by Groves (1973), is as follows. The conglomerate’s central
administration needs to choose an alternative from a set of possible alternatives. The
central administration’s payoff from an alternative depends on the effect this alter-
native has on the profits of the conglomerate’s corporations (for example, the central
administration may want to maximize the sum of the profits of the conglomerate’s
corporations). The effect of each alternative on a corporation’s profit is the private
information of the corporation’s manager. Therefore, to make an optimal decision,
the central administration must elicit from each manager information about the ef-
fect of each alternative on her corporation’s profit. Our study investigates whether
it is possible to elicit this information in environments where managers’ utilities de-
pend not only on the profits of their corporations but also on the profits of other
corporations in the conglomerate. Such dependency may occur, for example, when a
manager is a shareholder in the conglomerate and, therefore, profits from its success;
when a manager is rewarded according to the relative success of her corporation with
respect to the other corporations in the conglomerate; when a manager is connected
in some way (say, through family, friendship, or business ties) to other managers in
the conglomerate; or when a manager is invested in some other corporation of the
conglomerate.

The second scenario concerns a utilitarian designer who is called to choose a social
alternative. Consider a society some of whose members may have antisocial prefer-
ences, such as envy, spite, and so on.1 In such a scenario utilitarian theory suggests

1There is evidence in the experimental economics literature that subjects often have such “other-
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that these preferences will be “laundered”; i.e., that the antisocial aspects in these
preferences will be removed before the preferences are incorporated into the social
utility.2 Harsanyi, one of the greatest advocates of utilitarian theory, suggests that:

Some preferences . . . must be altogether excluded from our social-utility
function. In particular we must exclude all clearly antisocial preferences
such as sadism, envy, resentment and malice. . . . Utilitarian ethics makes
all of us members of the same moral community. A person displaying ill
will toward others does remain a member of this community, but not with
his whole personality. That part of his personality that harbors these
hostile antisocial feelings must be excluded from membership, and has no
claim to a hearing when it comes to defining our concept of social utility
(Harsanyi 1977, pp. 647)

Blanchet and Fleurbaey (2006) suggest that even altruistic preferences should be
“laundered” since they can lead to rewarding the selfish. Laundering preferences
means that when the designer is called to choose the social alternative, he should con-
sider only information about agents’ personal gains and disregard information about
agents’ social preferences. Our research question investigates whether the designer
can launder preferences when the information about the parameters of each agent’s
utility function is privately held by the agent.

We consider environments of agents whose preferences are quasilinear in money,
whose valuations are private, and whose utilities depend on the payoffs of other
agents.3 Such environments are different from environments of interdependent values
in the following respect. In environments of interdependent values, an agent’s utility is
affected by the mechanism through the decision rule and his personal transfer. In en-
vironments with interdependent payoffs, however, an agent’s utility is affected by the
mechanism through the decision rule, his personal transfer, and the personal transfers
of the agents whose payoffs affect his utility.4 That is, in environments of interde-

regarding” preferences. See Cooper and Kagel (2009) for a survey.
2See, for example, Harsanyi (1977), Goodin (1986), and Blanchet and Fleurbaey (2006).
3The dependency of an agent’s utility on the payoffs of other agents is a function of a signal that

is privately known to the agent.
4Note that the effect of other agents’ transfers on an agent’s utility, unlike the effect of his personal
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pendent payoffs mechanisms affect agents’ preferences in a more diversified manner,
compared to in environments of interdependent values. The property that agents’
utilities depend on the transfers of other agents affects the ability of the designer to
achieve implementation in two ways. On the one hand, it provides the designer with
more tools to incentivize an agent to report truthfully and to achieve implementation.
On the other hand, since each agent’s transfer affects the incentives of various agents,
constructing transfers that incentivize one agent to report truthfully may impair the
incentives of other agents to report truthfully.

We find that the possibility of implementation in environments with payoffs depen-
dencies heavily depends on the solution concept that is used for the implementation.
We call a setup with agents whose utilities depend on the payoffs of other agents an
interdependent payoffs setup and we show the following results:

• Under mild and economically reasonable conditions on the properties of the de-
cision rules and the structure of the valuation functions, ex-post implementation
is impossible in an interdependent payoffs setup.

• For any given profiles of valuation functions and distribution functions, the set
of decision rules that can be implemented in a Bayes–Nash equilibrium in any
interdependent payoffs setup is identical to the set of decision rules that can
be implemented in a Bayes–Nash equilibrium in the independent private values
setup.

• For each decision rule in the above set, there exists a transfer scheme that
implements it in a Bayes–Nash equilibrium in every interdependent payoffs setup
as well as in the independent private values setup.

In the interdependent payoffs model we must take into account the immense differ-
ence between ex-post implementation and Bayesian implementation. While ex-post
implementation is virtually impossible, Bayesian implementation allows for the im-
plementation of decision rules that satisfy certain monotonicity conditions and, in

transfer on his utility, depends on the realization of signals.
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particular, of the efficient decision rule.5 In models of independent private values we
do not see such a difference. For example, Gershkov et al. (2013) present an equiv-
alency result between dominant strategy and Bayesian implementation when signals
are one-dimensional. In models of interdependent values such a difference does not ap-
pear either. In these models positive results on efficient ex-post implementation have
been shown in the case where signals are one-dimensional; see, for example, Dasgupta
and Maskin (2000) and Perry and Reny (2002). On the other hand, negative results
on Bayesian efficient implementation have been presented in the case where signals
are multidimensional; see Jehiel and Moldovanu (2001). The reason for the difference
in the implementation power of these solution concepts in the interdependent payoffs
model is as follows. In the model an agent’s utility depends on other agents’ payoffs,
namely, on other agents’ valuations and transfers. This means that an agent’s transfer
affects not only the incentive of the agent who receives the transfer to report truth-
fully but also the incentives of other agents, whose utilities depend on this transfer,
to report truthfully. We show that when an agent’s utility depends on other agents’
payoffs a necessary condition for implementation is that the agent’s report does not
affect the payoffs of these agents. This means that when other agents’ utilities depend
on an agent’s payoff the agent’s transfer should eliminate the effect of these agents’
reports on his valuation. In addition, the agent’s transfer must also incentivize the
agent himself to report truthfully. When we consider ex-post implementation these
requirements for an agent’s transfer must be satisfied for every realization of signals.
We show that this cannot happen without contradictions and hence ex-post imple-
mentation is impossible. However, when we consider Bayesian implementation these
requirements should only be met in expectation. We show that in this case it is pos-
sible to construct transfer schemes that satisfy these requirements. Hence, Bayesian
implementation is possible.

Our impossibility result on ex-post implementation in the interdependent payoffs
model joins several other impossibility results on implementation by robust solution
concepts in the literature. In environments of private values and unrestricted prefer-
ences, Gibbard (1973) and Satterthwaite (1975) show that if the cardinality of the set

5We consider the “efficient decision rule” to be the decision rule that maximizes the sum of the
agents’ payoffs.
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of social alternatives is greater than or equal to three, then only dictatorial decision
rules are implementable in dominant strategies. Most of the literature on implemen-
tation, however, focuses on environments with quasilinear preferences. In such envi-
ronments an agent’s utility is affected by his personal transfer in an additive manner
independently of the realization of signals. The designer can use these personal trans-
fers to assist him in aligning agents’ preferences with social preferences. The analysis
of robust implementation in these environments provides positive results both in the
case of private values and in the case of interdependent values and single-dimensional
signals. In the case of interdependent values and multidimensional signals, however,
Jehiel et al. (2006) show that for generic valuation functions only constant decision
rules are ex-post implementable.6 In this paper, we consider environments of interde-
pendent payoffs, in which an agent’s personal transfer affects not only the preferences
of the agent who receives the transfer but also the preferences of other agents whose
utilities depend on this agent’s payoff. On the one hand, this provides the designer
with more ways to align agents’ preferences with social preferences with respect to
the standard quasilinear environment. On the other hand, since an agent’s trans-
fer affects the incentives of other agents, this property is also confining. Our result
shows that ultimately environments of interdependent payoffs do not allow for robust
implementation.

There are a number of other papers that analyze mechanism design problems in
models with social preferences. Desiraju and Sapington (2007) consider a screening
problem of a monopsonistic firm facing two potential workers who are inequity averse.
They show that if the two workers are identical ex-ante, then workers’ social prefer-
ences are not constraining and the firm can achieve the same expected payoff as in
the case where workers are selfish. They also show that the converse is generally true.
Siemens (2011) considers the monopsonist’s screening problem in a model with a con-
tinuum of workers where a proportion of them are averse to inequity. He shows that
the presence of inequity-averse workers distorts the firm’s production choice. In addi-
tion, it may also lead to the exclusion of workers who are both inequity averse and have

6It is worth noting that there are important environments that are negligible in Jehiel et al.’s
(2006) setting in which implementation of non-constant decision rules is possible, e.g., environments
of private goods; see Bikhchandani (2006).
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low abilities. Bierbrauer and Netzer (2016) consider the problem of implementation in
a model with intention-based preferences. They show that every decision rule that is
Bayesian implementable in the case where agents are selfish is also implementable in
their model. Moreover, they show that the existence of social preferences can be used
to reconcile efficiency, incentive compatibility, and individual rationality. Bartling
and Netzer (2016) investigate the trade-off between belief-robust implementation and
externality-robust implementation. They examine participants’ behavior both in the
second-price auction, which is dominant-strategy implementable but is not robust to
the existence of social preferences, and in its externality-robust counterpart, which is
robust to the existence of social preferences but is only Bayesian implementable. They
find that participants overbid in the second-price auction, but that average bids equal
value in the externality-robust auction. This result suggests that participants do take
into account the externalities of their actions on other participants. In addition, they
find that both auctions produce the same level of efficiency. This result suggests that
the two notions of robustness are equally important from an efficiency perspective.
The above papers focus on Bayesian implementation, while in this paper we concen-
trate on ex-post implementation. The analysis of ex-post implementation provides
insight into whether it is possible to satisfy the robustness criteria that appear in the
“Wilson critique” in models with social preferences; see Wilson (1987). In particular,
our result on ex-post implementation shows that achieving robustness both in the
dimension of beliefs and in the dimension of payoff externalities is impossible.

The rest of the paper is organized as follows. In Section 2 we present the model.
In Section 3 we discuss the notion of ex-post implementation and present an impos-
sibility result. In Section 4 we discuss the notion of Bayes–Nash implementation.
We characterize the set of Bayes–Nash implementable decision rules and construct
a transfer scheme that implements a decision rule that belongs to this set in every
interdependent payoffs setup as well as in the independent private values setup. In
Section 5 we discuss another interpretation of the model, the case of interdependent
utilities. Section 6 concludes. Proofs are relegated to the Appendix.
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2 The Model
Let I = {1, ..., n} be the set of agents. There is a finite set, A, of social alternatives
from which the designer has to choose an alternative. Each agent i ∈ I receives a
signal θi ∈ Θi, where Θi is a measurable space. The signal θi is drawn from the
set Θi according to the density function fi, where fi(θi) > 0 for every θi ∈ Θi.
If alternative a is chosen, if the signal realization is θi, and if agent i obtains a
transfer ti, then agent i’s payoff is given by Πi = vi (a, θi) + ti. The utility of agent i
depends in a linear manner on her personal payoff and on the payoffs of some (possibly
empty) subset of the other agents, i.e., ui = Πi + ∑

k∈Pi
δki · Πk, where Pi ⊂ I \ {i} and

δki ∈
[
δki , δ

k
i

]
⊂ R with δki < δki . The vector of coefficients

(
δki
)
k∈Pi

:= δi is drawn from
the set Di := ×

k∈Pi

[
δki , δ

k
i

]
according to the density function gi, where gi(δi) > 0 for

every δi ∈ Di. The signals θi and δi are the private information of agent i, they are
drawn independently of each other and of other agents’ signals, and their distributions
are common knowledge.7 A setup is a 3-tuple consisting of a profile of sets of agents
(Pi)i∈I , a profile of sets of coefficients (Di)i∈I , and a profile of density functions on
these sets of coefficients (gi)i∈I . Each setup characterizes the structure of the payoffs
dependencies in the model. We define R to be the set of all possible setups8

R :=
{〈

(Pi)i∈I , (Di)i∈I , (gi)i∈I
〉
| Pi ⊂ I \ {i} ,Di ∈M(Pi), gi ∈ L (Di)

}
We call the setup in R that satisfies ∀i ∈ I Pi = ∅ the independent private values setup
(PV). We define a set P := R\PV and call an element in the set P an interdependent
payoffs setup (IP). We denote Θ := ×

i∈I
Θi with generic element θ, and Θ−i := ×

k∈I\{i}
Θk

with generic element θ−i. We denote D := ×
i∈I
Di with generic element δ, and D−i :=

×
k∈I\{i}

Dk with generic element δ−i. A function q : Θ → A is called a decision rule.

A social choice function is a function s(θ, δ) = (q (θ) , t1 (θ, δ) , ..., tn (θ, δ)), where
q(θ) ∈ A and ti (θ, δ) ∈ R for every i ∈ I.

7We allow the existence of social preferences to be common knowledge. The intensity of these
preferences, however, is private knowledge.

8where M(Pi) is the set of all the possible sets of the form ×
k∈Pi

[
δki , δ

k
i

]
with δki < δki and L (Di)

is the set of all strictly positive density functions on Di.
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Remark. The decision rules we consider depend only on information about agents’
personal payoffs. However, in our analysis we allow agents’ transfers to depend also
on information about agents’ social preferences. Nonetheless, all the results in the
paper would still hold even if we restricted transfers to depend only on information
about agents’ payoffs.9

3 Ex-Post Implementation
We start with a definition ex-post implementation in the context of our model. Ex-
post equilibrium requires that the strategy of each agent i be optimal with respect
to the strategies of the other agents for every possible realization of signals. By the
revelation principle, we can restrict our analysis to direct mechanisms. Consider a
given profile of Θ, (vi)i∈I , and an IP setup, where IP∈P. We say that a social choice
function (q (θ) , t1 (θ, δ) , ..., tn (θ, δ)) is ex-post implementable in IP if for every i ∈ I,
θ ∈ Θ and δ ∈ D we have

(θi, δi) ∈ arg max
(θ̂i,δ̂i)∈Θi×Di

vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

))
+

∑
k∈Pi

[
δki

(
vk
(
q
(
θ̂i, θ−i

)
, θk
)

+ tk
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

)))]
A decision rule q (θ) is ex-post implementable in IP if there exists a profile of real
valued functions (t1 (θ, δ) , ..., tn (θ, δ)) such that (q (θ) , t1 (θ, δ) , ..., tn (θ, δ)) is ex-post
implementable in IP.

Consider a given profile of Θ, (vi)i∈I , and the PV setup, i.e., the setup where
∀i ∈ I Pi = ∅. We say that a social choice function of the form (q (θ) , t1 (θ) , ..., tn (θ))
is ex-post (dominant strategy) implementable in PV if for every i ∈ I and θ ∈ Θ we
have

θi ∈ arg max
θ̂i∈Θi

vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

))
9The impossibility result holds as a particular case, and the possibility result is based on transfer

schemes that depend only on information about agents’ payoffs.
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A decision rule q (θ) is ex-post (dominant strategy) implementable in PV if there exists
a profile of real valued functions (t1 (θ) , ..., tn (θ)), such that (q (θ) , t1 (θ) , ..., tn (θ)) is
ex-post implementable in PV. Ex-post implementability in IP implies ex-post (domi-
nant strategy) implementability in PV.

Lemma 1. Consider a given profile of Θ, (vi)i∈I , and an IP setup. If a decision
rule q(θ) is ex-post implementable in IP then it is ex-post (dominant strategy) imple-
mentable in PV.

3.1 The impossibility of ex-post implementation

We now present our main result that is an impossibility result of ex-post implemen-
tation in an IP setup. The argument behind this result is the following. Ex-post
implementation implies that if j ∈ Pi then for any two signals θi and θ

′
i the payoff

of agent j must remain equal on a subset of measure one of the interval
[
δji , δ

j
i

]
.10

Therefore, if the decision rule assign different alternatives for θi and θ
′
i, and if agent

j’s valuation is different for each alternative, it is left for agent j’s transfer function tj
to eliminate this gap in agent j’s payoff. However, tj also plays a role in incentivizing
agent j to report truthfully. We describe conditions under which these two roles of
tj lead to a contradiction and hence make ex-post implementation impossible. These
conditions are presented below.11

Property 1: There exists an agent î and ĵ ∈ Pî such that for every k ∈ Pĵ,
0 ∈

[
δk
ĵ
, δk
ĵ

]
. In words, there exists an agent î whose utility includes the

payoff of some agent ĵ, and it is possible, based on the common knowledge
of all the agents, that agent ĵ’s utility coincides with her personal payoff.

10For any fixed
(
θ−i, δ

−j
−i

)
∈ Θ−i ×D−j−i where D−j−i := D \

[
δji , δ

j
i

]
.

11Property 2 can be replaced by the demand that the signal space and the valuation function
satisfy any set of restrictions under which dominant strategy implementation in PV implies revenue
equivalence. See Krishna and Maenner (2001) and Heydenreich et al. (2009). Properties 3 and
4 can be replaced by the following weaker demand: there exist a profile θ̃−î−ĵ , two alternatives
a and b, θ1

î
, θ2

î
∈ Θî , and θ1

ĵ
, θ2

ĵ
∈ Θĵ , such that q

(
θ1
î
, θ1
ĵ
, θ̃−î−ĵ

)
= q

(
θ1
î
, θ2
ĵ
, θ̃−î−ĵ

)
= a and

q
(
θ2
î
, θ1
ĵ
, θ̃−î−ĵ

)
= q

(
θ2
î
, θ2
ĵ
, θ̃−î−ĵ

)
= b and vĵ

(
a, θ1

ĵ

)
− vĵ

(
a, θ2

ĵ

)
6= vĵ

(
b, θ1

ĵ

)
− vĵ

(
b, θ2

ĵ

)
.
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Property 2: Θi is a convex subset of a finite dimensional Euclidean space,
and vi (a, θi) is a convex function of θi for every i ∈ I.

Property 3: There exist a profile θ̃−î, two alternatives a and b, and θ1
î
,

θ2
î
∈ Θî, such that q

(
θ1
î
, θ̃−î

)
= a, q

(
θ2
î
, θ̃−î

)
= b, and there exists r > 0

such that for every θ−i ∈ B
((
θ̃−î
)
, r
)
, q(θ1

î
, θ−i) = a and q(θ2

î
, θ−i) =

b.12 In words, agent î is pivotal between alternatives a and b in some
neighborhood of other agents report profiles.

Property 4: For a and b that satisfy property 3 there exist θ1
ĵ
, θ2

ĵ
in every

neighborhood in Θĵ such that vĵ
(
a, θ1

ĵ

)
−vĵ

(
b, θ1

ĵ

)
> vĵ

(
a, θ2

ĵ

)
−vĵ

(
b, θ2

ĵ

)
.

In words, in every neighborhood of signals there exists a pair of signals
θ1
ĵ
and θ2

ĵ
such that agent ĵ’s valuation for moving from alternative b to

alternative a is different given each signal.

To get a sense of the strength of this impossibility result consider the following widely
used and analyzed setting. There is a finite set of alternatives A, a bijection function
µ from A to {1, ..., |A|}, a convex signal space Θi ⊆ R|A| for every i ∈ I, and valuation
functions vi(a, θi) = θ

µ(a)
i . Assuming that Θĵ contains an interval in some µ(a) axis

and that the decision rule q is an affine maximizer,13 we get that if agent î is pivotal
between alternatives a and b, then properties 2, 3, and 4 hold. Therefore if property 1
also holds implementation is impossible. Settings of this kind are used in the analysis
of many important economic scenarios, such as efficient auctions, efficient provision
of public goods, efficient trading, and more. Moreover, Roberts (1979), Lavi et al.
(2003), and Mishra and Sen (2012) characterize further conditions on the signal
space such that if these conditions hold every decision rule that is dominant strategy
implementable in PV is also an affine maximizer.14 Lemma 1 then implies that if these
conditions are met every decision rule that is ex-post implementable in IP is also an
affine maximizer. Hence, in settings that satisfy both property 1 and the conditions

12 B
((
θ̃−î
)
, r
)
≡
{
θ−i ∈ Θ−i : d

((
θ−i, θ̃−î

)
≤ r
)}

13A decision rule, q, is an affine maximizer if there exist an n-tuple λ1,...,λn not equal to zero and
a function κ : A→ R , and q(θ) = a if

∑
i∈I
λiθ

µ(a)
i + κ(a) >

∑
i∈I
λiθ

µ(a′)
i + κ(a′) for every a′ ∈ A \ {a} .

14Lavi et al. (2003) and Mishra and Sen (2012) consider decision rules that satisfy a certain
property.
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that appear in these papers our impossibility result applies to any decision rule with
the property that agent î is a pivotal agent. We now present the impossibility result
formally.

Theorem 2. If in a profile Θ, (vi)i∈I , IP ∈ P , and q (θ), properties 1 to 4 hold, then
q (θ) is not ex-post implementable in IP.

The argument in the proof can be demonstrated by considering a model with two
agents. Agent 1’s utility may depend on the payoff of agent 2, i.e. P1 = {2}, while
agent 2’s utility coincides with her own personal payoff, i.e. P2 = ∅. Consider a
decision rule q (θ) and a profile of valuation functions v1 and v2 that satisfy properties
2, 3 and 4. Consider some θ2. The payoff of agent 2 given θ2 as a function of agent
1’s report,

(
θ̂1, δ̂1

)
, is Π2

(
θ̂1, δ̂1, θ2

)
= v2

(
q
(
θ̂1, θ2

)
, θ2
)

+ t2
(
θ̂1, δ̂1, θ2

)
. The transfer

of agent 1 given θ2 as a function of agent 1’s report is t1
(
θ̂1, δ̂1, θ2

)
. Agent 1’s utility

function given θ2 is v1
(
q
(
θ̂1, θ2

)
, θ1
)

+ δ1Π2
(
θ̂1, δ̂1, θ2

)
+ t1

(
θ̂1, δ̂1, θ2

)
. Now assume

that agent 1 reports δ1 truthfully. Ex-post implementability implies that she must
report θ1 truthfully. The problem is therefore to incentivize agent 1 to report θ1 truth-
fully when her utility function is v1

(
q
(
θ̂1, θ2

)
, θ1
)

+ δ1Π2
(
θ̂1, δ1, θ2

)
+ t1

(
θ̂1, δ1, θ2

)
.

This problem is equivalent to the problem of incentivizing her to report truthfully in
the PV setup.15 Property 2 implies that in the PV setup revenue equivalence holds,
i.e., the transfer to agent 1 given θ2 in any transfer scheme that implements q (θ) is
unique up to a constant.16 Hence a truthful report of θ1 implies that for every δ1 ∈ D1

and θ1 ∈ Θ1 we have

(1) δ1Π2 (θ1, δ1, θ2) + t1 (θ1, δ1, θ2) = ϕ (θ1, θ2) + σ (δ1, θ2)

where ϕ : Θ1 ×Θ2 → R and σ : D1 ×Θ2 → R.17

15Define t̃δ1
1

(
θ̂1, θ2

)
= δ1Π2

(
θ̂1, δ1, θ2

)
+ t1

(
θ̂1, δ1, θ2

)
and the problem is to incentivize agent 1

to report θ1 truthfully given that her utility is v1

(
q
(
θ̂1, θ2

)
, θ1

)
+ t̃δ1

1

(
θ̂1, θ2

)
.

16See Krishna and Maenner (2001).
17Revenue equivalence means that t̃δ1

1

(
θ̂1, θ2

)
equals some function that depends on θ1 which we

denote by ϕ (θ1, θ2) plus a constant which we denote by σ (δ1, θ2).
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On the other hand assume agent 1 reports θ1 truthfully. Ex-post implementability
implies that she must report δ1 truthfully, i.e, for every θ1 ∈ Θ1 and δ1 ∈ D1 we have

v1 (q (θ1, θ2) , θ1)+δ1Π2 (θ1, δ1, θ2)+t1 (θ1, δ1, θ2) ≥ v1 (q (θ1, θ2) , θ1)+δ1Π2
(
θ1, δ̂1, θ2

)
+t1

(
θ1, δ̂1, θ2

)
for every δ̂1 ∈ D1. Subtracting v1 (q (θ1, θ2) , θ1) from both sides of the inequality we
have

δ1Π2 (θ1, δ1, θ2) + t1 (θ1, δ1, θ2) ≥ δ1Π2
(
θ1, δ̂1, θ2

)
+ t1

(
θ1, δ̂1, θ2

)
for every δ̂1 ∈ D1. This implies that18

(2) δ1Π2 (θ1, δ1, θ2)+t1 (θ1, δ1, θ2) = δ1Π2
(
θ1, δ1, θ2

)
+t1

(
θ1, δ1, θ2

)
+
∫ δ1

δ1
Π2 (θ1, s, θ2) ds

Combining equations (1) and (2) yields that for every δ1 ∈ D1 and every θ1 ∈ Θ1,∫ δ1
δ1

Π2 (θ1, s, θ2) ds = σ (δ1, θ2)−σ
(
δ1, θ2

)
. This implies that that for every θ1, θ

′
1 ∈ Θ1,

Π2 (θ1, ·, θ2) a.e= Π2
(
θ
′
1, ·, θ2

)
. Now due to properties 3 and 4 we can find signals θ1,

θ
′
1, θ2 and θ

′
2 such that q (θ1, θ2) = q

(
θ1, θ

′
2

)
= a, q

(
θ
′
1, θ2

)
= q

(
θ
′
1, θ

′
2

)
= b, and

v2 (a, θ2)− v2 (b, θ2) 6= v2
(
a, θ

′
2

)
− v2

(
b, θ

′
2

)
. In addition, we can find a signal δ1 such

that Π2 (θ1, δ1, θ2) = Π2
(
θ
′
1, δ1, θ2

)
and Π2

(
θ1, δ1, θ

′
2

)
= Π2

(
θ
′
1, δ1, θ

′
2

)
. This yields

that
t2 (θ1, δ1, θ2)− t2

(
θ
′

1, δ1, θ2
)
6= t2

(
θ1, δ1, θ

′

2

)
− t2

(
θ
′

1, δ1, θ
′

2

)
However, for agent 2 to report truthfully the function t2 must assign the same transfer
to signals that map the same alternative for a given report of agent 1. This implies
that

t2 (θ1, δ1, θ2)− t2
(
θ
′

1, δ1, θ2
)

= t2
(
θ1, δ1, θ

′

2

)
− t2

(
θ
′

1, δ1, θ
′

2

)
a contradiction.

The impossibility of ex-post implementation in the interdependent payoffs model is
yet another example of the difficulty of implementing decision rules by robust solution

18This stems from the following result. Let u(δ, δ̂) = δ · q
(
δ̂
)

+ t
(
δ̂
)
. If for every δ ∈

[
δ, δ
]
,

δ ∈ arg max
δ̂∈[δ,δ]

u(δ, δ̂) then for every δ ∈
[
δ, δ
]
, t (δ) + δq (δ) = t (δ) + δ · q (δ) +

∫ δ
δ q(s) ds.
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concepts in economic environments that diverge from the independent private values
model. Jehiel et al. (2006) present an impossibility result on ex-post implementation
in environments with interdependent values. They show that for generic valuation
functions the only deterministic decision rules that are ex-post implementable are
constant. As mentioned in the Introduction, our model is different from their model
in the following way. In the interdependent values model agent i’s report affects his
utility through the decision rule q and his personal transfer ti. In the interdependent
payoffs model, however, agent i’s report affects his utility through the decision rule q,
his personal transfer ti, and the personal transfers of the agents whose payoffs affect
agent i’s utility19 (tj)j∈Pi . That is, in the interdependent payoffs model mechanisms
affect agents’ incentives in a more complex way, compared to in the interdependent
values model. On the one hand, since an agent’s utility is affected by other agents’
transfers, mechanisms provide more freedom to align agents’ preferences with social
preferences and to achieve implementation. On the other hand, since each agent’s
transfer also affects the incentives of the other agents, mechanisms also impose fur-
ther restrictions on achieving implementation. In general environments, the extra
degrees of freedom that mechanisms provide in settings with interdependent payoffs
are offset by the restrictions they impose, and ex-post implementation is impossible.
Nonetheless, in particular setups that do not satisfy the conditions of Theorem 2,
the freedom that mechanisms provide in settings with interdependent payoffs allows
for ex-post implementation of non-constant decision rules. We illustrate this point
in the following example that presents a setup in which non-constant decision rules
are ex-post implementable in the interdependent payoffs model but are not ex-post
implementable in the interdependent values model.

Example 3. Consider the following setup. There are two agents I = {1, 2} and two
alternatives A = {a, b}. Each agent i ∈ I receives two private signals θi ∈ [0, 1] and
δi ∈ [0, 1]. The first signal affects his valuation while the second signal affects the
dependency of his utility on the other agent’s payoff\valuation. Agent i’s valuation,
i ∈ I, if alternative a is chosen is vi (a, θi) = θi + c, and his valuation if alternative b

19Note that while the effect of the agent’s personal transfer on his utility is independent of the
realization on signals, the effect of other agents’ transfers on his utility depends on the realization of
signals.
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is chosen is vi (b, θi) = θi. We now analyze the possibility to implement decision rules
that depend only on information about agents’ payoffs both in the interdependent
payoffs model and in the interdependent values model.
We first adapt this setup to the interdependent payoffs model. In this case agent i’s
utility is vi (q, θi) + δi · (vj (q, θj) + tj) + ti where q ∈ A. We now show that every
decision rule is ex-post implementable in this model. Consider an arbitrary decision
rule q (θ). For every i ∈ {1, 2} we define the following transfer function

ti (θi, δi, θj, δj) =

−c if q (θi, θj) = a

0 if q (θi, θj) = b

Under these transfer functions any type (θi, δi) of agent i receive the same utility, θi+
δi ·θj, irrespective of his report. Therefore, the decision rule is ex-post implementable.
We now adapt the above setup to the interdependent values model. In this case
agent i’s utility is vi (q, θi) + δi · vj (q, θj) + ti where q ∈ A. We now show that it is
impossible to implement ex-post non-constant decision rules in this model. Consider
an arbitrary type

(
θ̃j, δ̃j

)
of agent j, j 6= i. Ex-post implementability implies that for

every (θi, δi) ,
(
θ
′
i, δ
′
i

)
∈ [0, 1]2 such that q

(
θi, θ̃j

)
= q

(
θ
′
i, θ̃j

)
we have ti

(
θi, δi, θ̃j, δ̃j

)
=

ti
(
θ
′
i, δ
′
i, θ̃j, δ̃j

)
.20 That is, agent i’s transfer function depends only on the chosen

alternative, hence, we denote ti
(
θi, δi, θ̃j, δ̃j

)
:= ti

(
q (θi, θj) , θ̃j, δ̃j

)
. Consider a non-

constant decision rule q (θ). Look at a type
(
θ̃j, δ̃j

)
of agent j for which agent i is

pivotal. This means that there exist two signals θ′i and θ
′′
i such that q

(
θ
′
i, θ̃j

)
= a

and q
(
θ
′′
i , θ̃j

)
= b. Now, ex-post implementability implies that for every δi ∈ [0, 1] we

have that

θ
′

i + c+ δi ·
(
θ̃j + c

)
+ ti

(
a, θ̃j, δ̃j

)
≥ θ

′

i + δi · θ̃j + ti
(
b, θ̃j, δ̃j

)
and

θ
′′

i + c+ δi ·
(
θ̃j + c

)
+ ti

(
a, θ̃j, δ̃j

)
≤ θ

′′

i + δi · θ̃j + ti
(
b, θ̃j, δ̃j

)
20Assume ti

(
θi, δi, θ̃j , δ̃j

)
> ti

(
θ
′

i, δ
′

i, θ̃j , δ̃j

)
, then agent i of type

(
θ
′

i, δ
′

i

)
will have a profitable

deviation to (θi, δi)
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hence we get that for every δi ∈ [0, 1]

c · (1 + δi) = ti
(
b, θ̃j, δ̃j

)
− ti

(
a, θ̃j, δ̃j

)
Since the left hand side of the equation varies with δi and the right hand side of the
equation is constant we reach a contradiction.

4 Bayesian Implementation
We start with a definition of Bayesian implementation in the context of our model.
Bayes–Nash equilibrium requires that the strategy of each agent i be optimal in expec-
tation with respect to the strategies of the other agents given agent i’s knowledge on
the distributions of the other agents’ signals. By the revelation principle, we can re-
strict our analysis to direct mechanisms. Consider a given profile of Θ, (vi)i∈I , (fi)i∈I ,
and an IP setup. We say that a social choice function (q (θ) , t1 (θ, δ) , ..., tn (θ, δ)) is
Bayesian implementable in IP if for every i ∈ I, θi ∈ Θi and δi ∈ Di we have,

(θi, δi) ∈ arg max
(θ̂i,δ̂i)∈Θi×Di

Eθ−i,δ−i

[
vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

))
+

∑
k∈Pi

[
δki

(
vk
(
q
(
θ̂i, θ−i

)
, θk
)

+ tk
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

)))]
A decision rule q (θ) is Bayesian implementable in IP if there exists a profile of real val-
ued functions (t1 (θ, δ) , ..., tn (θ, δ)) such that (q (θ) , t1 (θ, δ) , ..., tn (θ, δ)) is Bayesian
implementable in IP.

Consider a given profile of Θ, (vi)i∈I , (fi)i∈I , and the PV setup. We say that a
social choice function of the form (q (θ) , t1 (θ) , ..., tn (θ)) is Bayesian implementable
in PV if for every i ∈ I and θ ∈ Θ we have,

θi ∈ arg max
θ̂i∈Θi

Eθ−i

[
vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

))]
A decision rule q (θ) is Bayesian implementable in PV if there exists a profile of real
valued functions (t1 (θ) , ..., tn (θ)) such that (q (θ) , t1 (θ) , ..., tn (θ)) is Bayesian imple-
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mentable in PV. Bayesian implementability in IP implies Bayesian implementability
in PV:

Proposition 4. Consider a given profile of Θ, (vi)i∈I , (fi)i∈I , and an IP setup. If a
decision rule q(θ) is Bayesian implementable in IP then it is Bayesian implementable
in PV.

We show that the converse is also true: every decision rule that is Bayesian im-
plementable in PV is Bayesian implementable in every IP. In addition, there exists a
transfer scheme that implements the decision rule for every element in R, namely, for
every IP setup and for the PV setup. Moreover, if the decision rule is dominant strat-
egy implementable in PV, then there exists a transfer scheme that implements the
decision rule in dominant strategy in PV and in a Bayes–Nash equilibrium in every
IP setup. We achieve these results by constructing a transfer scheme that eliminates
the effect of agent i’s report on the expected payoff of any agent but agent i. At
the same time, this transfer scheme incentivizes agent i to report truthfully when she
is interested in maximizing her own personal payoff. Therefore, this transfer scheme
incentivizes truth telling in every setup.21 We now show the result formally.

Theorem 5. Consider a profile Θ, (vi)i∈I , and (fi)i∈I . Let (q (θ) , t1 (θ) , ..., tn (θ)) be
Bayesian implementable in PV; then there exists a social choice function

(
q (θ) , t′1 (θ) , ..., t′n (θ)

)
that is Bayesian implementable in IP for every IP ∈ P with the following properties:

1.
(
q (θ) , t′1 (θ) , ..., t′n (θ)

)
is Bayesian implementable in PV.

2. If (q (θ) , t1 (θ) , ..., tn (θ)) is dominant strategy implementable in PV, then(
q (θ) , t′1 (θ) , ..., t′n (θ)

)
is dominant strategy implementable in PV.

3. Eθ [ti (θ)] = Eθ
[
t
′
i (θ)

]
for every i ∈ I .

The structure of the proof is as follows. Given a transfer scheme (ti (θ))i∈I that
implements q (θ) in PV, we define

(
t
′
i (θ)

)
i∈I

to be

t
′
i (θ) = ti (θ)−

∑
j∈I\{i}

Eθ̃−j

[
vi
(
q
(
θj , θ̃−j

)
, θ̃i
)

+ ti
(
θj , θ̃−j

)]
+

∑
j∈I\{i}

Eθ̃

[
vi
(
q
(
θ̃
)
, θ̃i
)

+ ti
(
θ̃
)]

21Similar approach is used in Bierbrauer and Netzer (2016).
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Consider an IP setup. Let i ∈ I and k ∈ Pi. The i-th element in the second
additive term (the sum over Eθ̃−j) in the transfer function t′k (θ) eliminates the effect
of the report of agent i, θ̂i, on the expected payoff of agent k from agent i’s perspective.
In other words, from agent i’s perspective, the report θ̂i does not affect the expected
payoff of agent k, for every k ∈ Pi. It is therefore sufficient to show that

(
t
′
i (θ)

)
i∈I

Bayesian implements q (θ) in PV. This follows from the fact that t′i (θ) equals ti (θ)
plus additive terms that do not depend on θ̂i and that (ti (θ))i∈I Bayesian implements
q (θ) in PV. For the same reasons we get that if (ti (θ))i∈I implements q (θ) in dominant
strategy in PV then so does

(
t
′
i (θ)

)
i∈I

.

5 Interdependent Utilities

Our model considers agents who posses preferences of interdependent payoffs. How-
ever, this model can be suitable for the case where agents have interdependent utilities.
Consider the following two-agents case. Each agent i benefits from her own welfare,
Πi, and from observing the other agent’s utility. The assumption is that the utility
function of agent i is Ui = Πi + δiUj, where δi ∈

[
0, δi

]
with δi < 1.22 Agent i’s

welfare is Πi = vi (a, θi) + ti where a ∈ A is the chosen alternative, θi ∈ Θi is agent
i’s signal, and ti is agent i’s monetary transfer. We assume that δi and θi hold the
same properties which are detailed in section 2.23 Solving for U1 and U2 we get that
Ui =

(
1

1−δ1δ2

)
Πi +

(
δi

1−δ1δ2

)
Πj. In such a setup the standard utilitarian social choice

function that sums the agents’ utilities, namely, U1 +U2 = (1+δ2)·Π1+(1+δ1)·Π2
1−δ1δ2 , has been

criticized for rewarding the more selfish agent by assigning her a greater weight.24

The way to deal with this ethical criticism is to remove anti-social preferences from
consideration.25 Therefore, the appropriate social choice function is the sum of wel-
fares, namely, the objective function of the designer is Π1 + Π2. Under this objective
function the optimal decision rule depends on θ alone (and not on δ). We show in
the Appendix that the problem of implementing the optimal decision rule in this case

22This setup appears in Bergstrom (1989), (1999).
23This assumption seems natural in this scenario.
24See Blanchet and Fleurbaey (2006).
25See Goodin (1986) and Harsanyi (1977).

18



can be solved by using the results on implementation that we have developed for the
interdependent payoffs model.

6 Concluding Remarks

We have considered the problem of implementation in a model with agents who have
interdependent payoffs. We have considered both ex-post and Bayesian implemen-
tation. We have shown that ex-post implementation is impossible, while Bayesian
implementation allows for the implementation of every decision rule that is imple-
mentable in the independent private values model. These results suggest that the
less knowledge there is of the economic environment, the harder it is to acquire in-
formation in the presence of personal interests. Our impossibility result highlights
the question whether ex-post implementation is possible in other environments with
social preferences. The environment we have considered joins several other environ-
ments in which it has been shown that implementation in robust solution concepts is
impossible. This presents yet another example of the difficulty of carrying out robust
implementation.

A Appendix

A.1 Interdependent Utilities

In this subsection we show that the problem of implementing the optimal decision
rule in the interdependent utilities setup can be solved by using the results on imple-
mentation that we have developed for the interdependent payoffs model. We start by
showing that ex-post implementation of the optimal decision rule is impossible in the
interdependent utilities setup. Consider the optimal decision rule in the interdepen-
dent utilities setup

q(θ) ∈ arg max
a∈A

v1 (a, θ1) + v2 (a, θ2)
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The optimal decision rule is ex-post implementable in the interdependent utilities
setup if for every i ∈ I, θ ∈ Θ and δ ∈ D we have

1
1− δ1δ2

[vi (q (θi, θ−i) , θi) + ti ((θi, θ−i) , (δi, δ−i)) + δi (vj (q (θi, θj) , θj) + tj ((θi, θj) , (δi, δj)))] ≥

1
1− δ1δ2

[
vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

))
+ δi

(
vj
(
q
(
θ̂i, θj

)
, θj
)

+ tj
((
θ̂i, θj

)
,
(
δ̂i, δj

)))]
this inequality holds if and only if for every i ∈ I, θ ∈ Θ and δ ∈ D we have

vi (q (θi, θ−i) , θi) + ti ((θi, θ−i) , (δi, δ−i)) + δi (vj (q (θi, θj) , θj) + tj ((θi, θj) , (δi, δj)))

≥ vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

))
+ δi

(
vj
(
q
(
θ̂i, θj

)
, θj
)

+ tj
((
θ̂i, θj

)
,
(
δ̂i, δj

)))
and this inequality holds if and only if q(θ) is ex-post implementable in IP. We showed
in Section 4 that if properties 1 to 4 hold, the optimal decision rule is not ex-post
implementable in IP. Therefore, if these properties hold in the interdependent utilities
setup, the optimal decision rule is not ex-post implementable in the interdependent
utilities setup.

We now show, using the result on Bayesian implementation in the interdepen-
dent payoffs model, that the optimal decision rule is Bayesian implementable in the
interdependent utilities setup.

The optimal decision rule is dominant strategy implementable in PV. Therefore,
by Theorem 4, there exists a transfer scheme (t1(θ), t2(θ)) the implements it in a
Bayes-Nash equilibrium in any IP, i.e., for every δi and θi

θi ∈ arg max
θ̂i∈Θi

Eθj ,δj

[
vi

(
q
(
θ̂i, θj

)
, θi

)
+ ti

(
θ̂i, θj

)
+ δi

(
vj

(
q
(
θ̂i, θj

)
, θj

)
+ tj

(
θ̂i, θj

))]
given this transfer scheme we get that for every δi and θi

θi ∈ arg max
θ̂i∈Θi

Eθj ,δj

{
1

1− δ1δ2

[
vi

(
q
(
θ̂i, θj

)
, θi

)
+ ti

(
θ̂i, θj

)
+ δi

(
vj

(
q
(
θ̂i, θj

)
, θj

)
+ tj

(
θ̂i, θj

))]}

i.e., the optimal decision rule is Bayesian implementable in the interdependent utilities
setup.
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A.2 Proofs

A.2.1 Proof of Lemma 1

Assume that q(θ) is ex-post implementable in IP; then there exists a social choice function
(q (θ) , t1 (θ, δ) , ..., tn (θ, δ)) such that for every i ∈ I, θ ∈ Θ, and δ ∈ D, we have

(θi, δi) ∈ arg max
(θ̂i,δ̂i)∈Θi×Di

vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

))
+

∑
k∈Pi

[
δki

(
vk
(
q
(
θ̂i, θ−i

)
, θk
)

+ tk
((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

)))]
Choose an arbitrary δ̃ ∈ D; then for every i ∈ I, and θ ∈ Θ, we have

θi ∈ arg max
θ̂i

vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
((
θ̂i, θ−i

)
, δ̃
)

+
∑
k∈Pi

[
δ̃ki

(
vk
(
q
(
θ̂i, θ−i

)
, θk
)

+ tk
((
θ̂i, θ−i

)
, δ̃
))]

For every i ∈ I, we define t′i (θ) := ti
(
θ, δ̃
)

+
∑
k∈Pi

[
δ̃ki

(
vk (q (θ) , θk) + tk

(
θ, δ̃
))]

. Then

for every i ∈ I, and θ ∈ Θ, we have θi ∈ arg max
θ̂i

vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ t
′
i

(
θ̂i, θ−i

)
, namely,(

q (θ) , t′1 (θ) , ..., t′n (θ)
)
is ex-post implementable in PV, and hence q (θ) is ex-post imple-

mentable in PV �

A.2.2 Proof of Theorem 2

We first present two lemmas that are needed to prove the main theorem and some notations.
Lemma 5. Assume that property 2 holds; Then for every decision rule q(θ) that is

ex-post implementable in PV, there exists a profile of functions
(
t̃1 (θ) , ..., t̃n (θ)

)
such that

a social choice function
(
q (θ) , t′1 (θ) , ..., t′n (θ)

)
is ex-post implementable in PV if and only

if there exists a function τi : Θ−i → R such that t′i (θ) = t̃i (θ) + τi (θ−i) for every i ∈ I.
Moreover, if for a given profile θ−i there exist θ1

i and θ2
i such that q

(
θ1
i , θ−i

)
= q

(
θ2
i , θ−i

)
,

then t̃i
(
θ1
i , θ−i

)
= t̃i

(
θ2
i , θ−i

)
.

Proof: For the first part of the Lemma see Krishna and Maenner (2001). we pro-
ceed to the proof of the second part of the lemma. Let i ∈ I and let θ−i be a profile
such that there exist θ1

i and θ2
i for which q

(
θ1
i , θ−i

)
= q

(
θ2
i , θ−i

)
and assume by nega-

tion that t̃i
(
θ1
i , θ−i

)
6= t̃i

(
θ2
i , θ−i

)
. Assume w.l.o.g. that t̃i

(
θ1
i , θ−i

)
> t̃i

(
θ2
i , θ−i

)
, then
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vi
(
q
(
θ1
i , θ−i

)
, θ2
i

)
+ t̃i

(
θ1
i , θ−i

)
+ τi (θ−i) > vi

(
q
(
θ2
i , θ−i

)
, θ2
i

)
+ t̃i

(
θ2
i , θ−i

)
+ τi (θ−i), in con-

tradiction to the fact that
(
q (θ) , t̃1 (θ) , ..., t̃n (θ)

)
is ex-post implementable in PV �

Lemma 6: Let u :
[
δ, δ
]2
→ R be u(δ, δ̂) = δ · q

(
δ̂
)

+ t
(
δ̂
)
. If for every δ ∈

[
δ, δ
]
,

δ ∈ arg max
δ̂∈[δ,δ]

u(δ, δ̂), then:

1. q (·)is non-decreasing
2. for every δ ∈

[
δ, δ
]
, t (δ) + δq (δ) = t (δ) + δ · q (δ) +

∫ δ
δ q(s) ds.

Proof: Assume that δ ∈ arg max
δ̂

u(δ, δ̂); then for every δ̃ > δ we have u(δ, δ) ≥ δ ·q
(
δ̃
)

+

t
(
δ̃
)

= u(δ̃, δ̃) +
(
δ − δ̃

)
· q
(
δ̃
)

and u(δ̃, δ̃) ≥ δ̃ · q (δ) + t (δ) = u(δ, δ) +
(
δ̃ − δ

)
· q (δ). We

let V (δ) := u(δ, δ). Then we get q
(
δ̃
)
≥ V (δ̃)−V (δ)

δ̃−δ ≥ q(δ), i.e., q (·) is non-decreasing. In
addition if V (·) is differentiable in δ, then V ′ (δ) = q (δ). Now V (δ) = max

δ̂∈[δ,δ]
u(δ, δ̂), namely,

it is a maximum of affine functions therefore it is convex and thus absolutely continuous so
V (δ) = V (δ) +

∫ δ
δ q(s) ds, namely t (δ) + δq (δ) = t (δ) + δ · q (δ) +

∫ δ
δ q(s) ds �

Notations: We denote Θ−i−j := ×
k∈I\{i,j}

Θk with generic element θ−i−j . We denote

D−j−i := D \
[
δji , δ

j
i

]
with generic element δ−j−i .

Proof of the Theorem: Assume by negation that q (θ) is ex-post implementable in IP,
then there exists a social choice function (q (θ) , t1 (θ, δ) , ..., tn (θ, δ)) that is ex-post imple-
mentable in IP. According to the proof of Lemma 1, given some arbitrary profile δ̃ ∈ D, if we
define µi (θ) := ti

(
θ, δ̃
)

+
∑
k∈Pi

[
δ̃ki

(
vk (q (θ) , θk) + tk

(
θ, δ̃
))]

, then (q (θ) , µ1 (θ) , ..., µn (θ))

is ex-post implementable in PV. Therefore, according to Lemma 5, there exists a profile
of functions t̃1 (θ) , ..., t̃n (θ) and a profile of functions τ1

(
θ−1, δ̃

)
, ..., τn

(
θ−n, δ̃

)
such that

µi (θ) = t̃i (θ) + τi
(
θ−i, δ̃

)
, and so we get ti

(
θ, δ̃
)

+
∑
k∈Pi

[
δ̃ki

(
vk (q (θ) , θk) + tk

(
θ, δ̃
))]

=

t̃i (θ) + τi
(
θ−i, δ̃

)
. This is true for every δ ∈ D and therefore we can present the following

general expression. For every δ ∈ D,

(1) ti (θ, δ) +
∑
k∈Pi

[
δki (vk (q (θ) , θk) + tk (θ, δ))

]
= t̃i (θ) + τi (θ−i, δ)

Let i ∈ I and j ∈ Pi. Consider an arbitrary profile
(
θ−i, δ

−j
−i

)
∈ Θ−i × D−j−i (i.e., a profile
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of all the signals except for θi and δji ). Moreover assume that
(
δ̂ki

)
k∈Pi\{j}

=
(
δki

)
k∈Pi\{j}

(i.e., agent i truthfully reports all her signals except for θi and δji ). The utility function of
agent i given this profile as a function of her true signal

(
θi, δ

j
i

)
and her report

(
θ̂i, δ̂

j
i

)
is

(2) vi

(
q
(
θ̂i, θ−i

)
, θi

)
+ti

((
θ̂i, θ−i

)
,
(
δ̂ji , δ

−j
−i

))
+
∑
k∈Pi

[
δki

(
vk

(
q
(
θ̂i, θ−i

)
, θk

)
+ tk

((
θ̂i, θ−i

)
,
(
δ̂ji , δ

−j
−i

)))]
We present the following notations:

ti
(
θ̂i, δ̂

j
i

)
:= ti

((
θ̂i, θ−i

)
,
(
δ̂ji , δ

−j
−i

))
+

∑
k∈Pi\{j}

[
δki

(
vk
(
q
(
θ̂i, θ−i

)
, θk
)

+ tk
((
θ̂i, θ−i

)
,
(
δ̂ji , δ

−j
−i

)))]

Πj

(
θ̂i, δ̂

j
i

)
:= vj

(
q
(
θ̂i, θ−i

)
, θj
)

+ tj
((
θ̂i, θ−i

)
,
(
δ̂ji , δ

−j
−i

))

t̂i (θi) := t̃i (θi, θ−i)

C
(
δji

)
:= τi

(
θ−i,

(
δji , δ

−j
−i

))
We write (2) using the above notations:

(
2′
)

vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
(
θ̂i, δ̂

j
i

)
+ δji ·Πj

(
θ̂i, δ̂

j
i

)
By equation (1), ex-post implementation implies that

(3) ti
(
θi, δ

j
i

)
+ δji ·Πj

(
θi, δ

j
i

)
= t̂i (θi) + C

(
δji

)
for every δji ∈

[
δji , δ

j
i

]
and, in particular, for δji

(3′) ti
(
θi, δ

j
i

)
+ δji ·Πj

(
θi, δ

j
i

)
= t̂i (θi) + C

(
δji

)
Now ex-post implementation implies that for every θi ∈ Θi and for every δ̂ji ∈

[
δji , δ

j
i

]
(4) vi (q (θ) , θi) + ti

(
θi, δ

j
i

)
+ δji ·Πj

(
θi, δ

j
i

)
≥ vi (q (θ) , θi) + ti

(
θi, δ̂

j
i

)
+ δji ·Πj

(
θi, δ̂

j
i

)
Subtracting vi (q (θ) , θi) from both sides of the inequality we have
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δji ·Πj

(
θi, δ

j
i

)
+ ti

(
θi, δ

j
i

)
≥ δji ·Πj

(
θi, δ̂

j
i

)
+ ti

(
θi, δ̂

j
i

)
By lemma 6, this implies that

(5) ti
(
θi, δ

j
i

)
+ δji ·Πj

(
θi, δ

j
i

)
= ti

(
θi, δ

j
i

)
+ δji ·Πj

(
θi, δ

j
i

)
+
∫ δji

δji

Πj (θi, s) ds

Plugging equations (3) and (3’) into equation (5) yields

(6) t̂i (θi) + C
(
δji

)
= t̂i (θi) + C

(
δji

)
+
∫ δji

δji

Πj (θi, s) ds

Subtracting t̂i (θi) from both sides of the equality we have for every δji ∈
[
δji , δ

j
i

]

(6′)
∫ δji

δji

Πj (θi, s) ds = C
(
δji

)
− C

(
δji

)
for every θi ∈ Θi.
Therefore, we get that for every θi, θ

′
i ∈ Θi, Πj (θi, ·)

a.e= Πj

(
θ
′
i, ·
)
. This means that the

functions can receive different values only on a subset of
[
δji , δ

j
i

]
that has a measure of zero.

We conclude that given arbitrary θ−i and δ−j−i it must be the case that

(7) vj (q (θi, θ−i) , θj)+tj
(
(θi, θ−i) ,

(
·, δ−j−i

))
a.e= vj

(
q
(
θ
′
i, θ−i

)
, θj
)
+tj

((
θ
′
i, θ−i

)
,
(
·, δ−j−i

))
for every θi, θ

′
i ∈ Θi.

• According to property 1 there exists an agent î and ĵ ∈ Pî such that for every k ∈ Pĵ ,

0 ∈
[
δk
ĵ
, δk
ĵ

]
.

• According to property 3 there exist a profile θ̃−î, two alternatives a and b and two
types θ1

î
, θ2

î
∈ Θî such that q

(
θ1
î
, θ̃−î

)
= a and q

(
θ2
î
, θ̃−î

)
= b. In addition there

exists r > 0 such that for every θ−i ∈ B
((
θ̃−î

)
, r
)
, q(θ1

î
, θ−i) = a and q(θ2

î
, θ−i) = b.

• According to property 4 there exist θ1
ĵ
, θ2

ĵ
∈ Θĵ such that, vĵ

(
a, θ1

ĵ

)
− vĵ

(
b, θ1

ĵ

)
6=

vĵ

(
a, θ2

ĵ

)
− vĵ

(
b, θ2

ĵ

)
and in addition

(
θ1
ĵ
, θ̃−î−ĵ

)
∈ B

((
θ̃−î

)
, r
)
and

(
θ2
ĵ
, θ̃−î−ĵ

)
∈

B
((
θ̃−î

)
, r
)
.
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Therefore,
(8) q

(
θ1
î
, θ1
ĵ
, θ̃−î−ĵ

)
= q

(
θ1
î
, θ2
ĵ
, θ̃−î−ĵ

)
= a

q
(
θ2
î
, θ1
ĵ
, θ̃−î−ĵ

)
= q

(
θ2
î
, θ2
ĵ
, θ̃−î−ĵ

)
= b

By Lemma 5, the equations in (8) imply that

(9) t̃ĵ

(
θ1
î
, θ1
ĵ
, θ̃−î−ĵ

)
= t̃ĵ

(
θ1
î
, θ2
ĵ
, θ̃−î−ĵ

)
= α

t̃ĵ

(
θ2
î
, θ1
ĵ
, θ̃−î−ĵ

)
= t̃ĵ

(
θ2
î
, θ2
ĵ
, θ̃−î−ĵ

)
= β

Consider some profile in D−ĵ−î in which δk
ĵ

= 0 for every k ∈ Pĵ , and denote it by δ̃−ĵ−î .

Consider the profile
(
θ1
ĵ
, θ̃−î−ĵ , δ̃

−ĵ
−î

)
. By equation (7) we have that

(10) vĵ

(
q

(
θ1
î
, θ1
ĵ
, θ̃−î−ĵ

)
, θ1
ĵ

)
+tĵ
((

θ1
î
, θ1
ĵ
, θ̃−î−ĵ

)
,

(
δĵ
î
, δ̃−ĵ
−î

))
= vĵ

(
q

(
θ2
î
, θ1
ĵ
, θ̃−î−ĵ

)
, θ1
ĵ

)
+tĵ
((

θ2
î
, θ1
ĵ
, θ̃−î−ĵ

)
,

(
δĵ
î
, δ̃−ĵ
−î

))
for every δĵ

î
∈M1, where M1 =

[
δĵ
î
, δĵ
î

]
\K1, where K1 is a set with a measure zero that is

contained in
[
δĵ
î
, δĵ
î

]
.

Consider the profile
(
θ2
ĵ
, θ̃−î−ĵ , δ̃

−ĵ
−î

)
. By equation (7) we have that

(11) vĵ

(
q

(
θ1
î
, θ2
ĵ
, θ̃−î−ĵ

)
, θ2
ĵ

)
+tĵ
((

θ1
î
, θ2
ĵ
, θ̃−î−ĵ

)
,

(
δĵ
î
, δ̃−ĵ
−î

))
= vĵ

(
q

(
θ2
î
, θ2
ĵ
, θ̃−î−ĵ

)
, θ2
ĵ

)
+tĵ
((

θ2
î
, θ2
ĵ
, θ̃−î−ĵ

)
,

(
δĵ
î
, δ̃−ĵ
−î

))
for every δĵ

î
∈ M2, where M2 =

[
δĵ
î
, δĵ
î

]
\K2, where K2 is a set with a measure zero which

is contained in
[
δĵ
î
, δĵ
î

]
.

Now M1 ∩M2 =
[
δĵ
î
, δĵ
î

]
\K1 ∪K2 6= ∅ and therefore there exists δ̃ĵ

î
∈M1 ∩M2. We denote

this profile by δ̃ =
(
δ̃ĵ
î
, δ̃−ĵ−î

)
. Equations (10) and (11), then imply that

(12)
{
vĵ

(
q

(
θ1
î
, θ1
ĵ
, θ̃−î−ĵ

)
, θ1
ĵ

)
+ tĵ

((
θ1
î
, θ1
ĵ
, θ̃−î−ĵ

)
, δ̃

)
−
[
vĵ

(
q

(
θ2
î
, θ1
ĵ
, θ̃−î−ĵ

)
, θ1
ĵ

)
+ tĵ

((
θ2
î
, θ1
ĵ
, θ̃−î−ĵ

)
, δ̃

)]}
−
{
vĵ

(
q

(
θ1
î
, θ2
ĵ
, θ̃−î−ĵ

)
, θ2
ĵ

)
+ tĵ

((
θ1
î
, θ2
ĵ
, θ̃−î−ĵ

)
, δ̃

)
−
[
vĵ

(
q

(
θ2
î
, θ2
ĵ
, θ̃−î−ĵ

)
, θ2
ĵ

)
+ tĵ

((
θ2
î
, θ2
ĵ
, θ̃−î−ĵ

)
, δ̃

)]}
= 0

since the expression in each wavy brackets is equal to zero. In addition, under the profile δ̃
we have that δ̃k

ĵ
= 0 for every k ∈ Pĵ . Therefore, by equation (1) we have that tĵ

(
θ, δ̃
)

=

t̃ĵ (θ) + τĵ

(
θ−ĵ , δ̃

)
. Plugging this identity and the equations in (8) and (9) to equation (12)
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yields

(12)
{
vĵ

(
a, θ1

ĵ

)
+ α+ τĵ

(
θ1
î
, θ̃−î−ĵ , δ̃

)
−
[
vĵ

(
b, θ1

ĵ

)
+ β + τĵ

(
θ2
î
, θ̃−î−ĵ , δ̃

)]}

−
{
vĵ

(
a, θ2

ĵ

)
+ α+ τĵ

(
θ1
î
, θ̃−î−ĵ , δ̃

)
−
[
vĵ

(
b, θ2

ĵ

)
+ β + τĵ

(
θ2
î
, θ̃−î−ĵ , δ̃

)]}
=

= vĵ

(
a, θ1

ĵ

)
− vĵ

(
b, θ1

ĵ

)
−
(
vĵ

(
a, θ2

ĵ

)
− vĵ

(
b, θ2

ĵ

))
6= 0

a contradiction. �

A.2.3 Proof of Proposition 4

Assume that q(θ) is Bayesian implementable in IP. Then there exists a social choice function
(q (θ) , t1 (θ, δ) , ..., tn (θ, δ)) such that for every i ∈ I , θi ∈ Θi, and δi ∈ Di we have

(1) (θi, δi) ∈ arg max
(θ̂i,δ̂i)∈Θi×Di

Eθ−i,δ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)
+ ti

((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

))
+

∑
k∈Pi

[
δki

(
vk

(
q
(
θ̂i, θ−i

)
, θk

)
+ tk

((
θ̂i, θ−i

)
,
(
δ̂i, δ−i

)))]]

Consider an arbitrary profile δ̃i and assume that δ̂i = δ̃i; then (1) implies that for every
θi ∈ Θi we have

θi ∈ arg max
θ̂i∈Θi

Eθ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)]
+Eθ−i,δ−i

[∑
k∈Pi

[
δ̃ki

(
vk

(
q
(
θ̂i, θ−i

)
, θk

)
+ tk

((
θ̂i, θ−i

)
,
(
δ̃i, δ−i

)))]]

Define µi

(
θ̂i

)
:= Eθ−i,δ−i

[ ∑
k∈Pi

[
δ̃ki

(
vk

(
q
(
θ̂i, θ−i

)
, θk

)
+ tk

((
θ̂i, θ−i

)
,
(
δ̃i, δ−i

)))]]
. Thus we

get
θi ∈ arg max

θ̂i∈Θi

Eθ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)]
+ µi

(
θ̂i

)
. For every i ∈ I , let t

′

i (θ) = µi (θi); then θi ∈

arg max
θ̂i∈Θi

Eθ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)
+ t
′

i

(
θ̂i, θ−i

)]
for every θi ∈ Θi. Therefore

(
q (θ) , t′1 (θ) , ..., t′n (θ)

)
is Bayesian implementable in PV, and hence q (θ) is Bayesian implementable in PV. �
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A.2.4 Proof of Theorem 5

Let (q (θ) , t1 (θ) , ..., tn (θ)) be a Bayesian implementable social choice function in PV and let
IP ∈ P . Define for every i ∈ I

(1) t
′

i (θ) := ti (θ)−
∑

j∈I\{i}

Eθ̃−j

[
vi
(
q
(
θj , θ̃−j

)
, θ̃i
)

+ ti
(
θj , θ̃−j

)]
+

∑
j∈I\{i}

Eθ̃
[
vi
(
q
(
θ̃
)
, θ̃i
)

+ ti
(
θ̃
)]

In a IP setup, given the profile of functions
(
t
′

i

)
i∈I

, the expected utility of agent i as a
function of his report is

(2) Eθ−i,δ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)
+ t

′

i

(
θ̂i, θ−i

)
+
∑
k∈Pi

[
δki

(
vk

(
q
(
θ̂i, θ−i

)
, θk

)
+ t

′

k

(
θ̂i, θ−i

))]]
=

= Eθ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)
+ t

′

i

(
θ̂i, θ−i

)
+
∑
k∈Pi

[
δki

(
vk

(
q
(
θ̂i, θ−i

)
, θk

)
+ t

′

k

(
θ̂i, θ−i

))]]

According to the definition in (1) we get that for every k ∈ Pi,

Eθ−i

[(
vk

(
q
(
θ̂i, θ−i

)
, θk

)
+ t

′

k

(
θ̂i, θ−i

))]
= Eθ̃

[
vk
(
q
(
θ̃
)
, θ̃i
)

+ tk
(
θ̃
)]

which is constant and equals the expected payoff of agent k in the PV setup when the profile
of transfer functions is (ti (θ))i∈I . In addition by the definition of t′i we get that

Eθ−i

[
t
′

i

(
θ̂i, θ−i

)]
= Eθ−i

[
ti

(
θ̂i, θ−i

)]
Using these results we get that (2), i.e., the expected utility of agent i as a function of his
report, equals

Eθ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)
+ ti

(
θ̂i, θ−i

)]
+
∑
k∈Pi

δki · Eθ̃
[
vk
(
q
(
θ̃
)
, θ̃i
)

+ tk
(
θ̃
)]

Since (q (θ) , t1 (θ) , ..., tn (θ)) is Bayesian implementable in PV,

θi ∈ arg max
θ̂i∈Θi

Eθ−i

[
vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ ti
(
θ̂i, θ−i

)]
which implies that

θi ∈ arg max
θ̂i∈Θi

Eθ−i

[
vi

(
q
(
θ̂i, θ−i

)
, θi

)
+ ti

(
θ̂i, θ−i

)]
+
∑
k∈Pi

δki · Eθ̃
[
vk
(
q
(
θ̃
)
, θ̃i
)

+ tk
(
θ̃
)]

and therefore

27



(θi, δi) ∈ arg max
(θ̂i,δ̂i)∈Θi×Di

Eθ−i,δ−i

[
vi
(
q
(
θ̂i, θ−i

)
, θi
)

+ t
′
i

(
θ̂i, θ−i

)
+
∑
k∈Pi

[
δki
(
vk
(
q
(
θ̂i, θ−i

)
, θk
)

+ t
′
k

(
θ̂i, θ−i

))]]

Therefore,
(
q (θ) , t′1 (θ) , ..., t′n (θ)

)
is Bayesian implementable in IP. Now, for every i ∈ I,

t
′
i (θ) equals ti (θ) plus a function that does not depend on θi. Therefore, if (ti (θ))i∈I
Bayesian implements q (θ) in PV then so does

(
t
′
i (θ)

)
i∈I

, and if (ti (θ))i∈I implements

q (θ) in dominant strategy in PV, then so does
(
t
′
i (θ)

)
i∈I

. Moreover for every i ∈ I,

Eθ−i

[
t
′

i

(
θ̂i, θ−i

)]
= Eθ−i

[
ti

(
θ̂i, θ−i

)]
and therefore Eθ [ti (θ)] = Eθ

[
t
′

i (θ)
]
for every i ∈ I �
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